Nonlinear infrared spectroscopy free from spectral selection

نویسندگان

  • Anna Paterova
  • Shaun Lung
  • Dmitry A. Kalashnikov
  • Leonid A. Krivitsky
چکیده

Infrared (IR) spectroscopy is an indispensable tool for many practical applications including material analysis and sensing. Existing IR spectroscopy techniques face challenges related to the inferior performance and the high cost of IR-grade components. Here, we develop a new method, which allows studying properties of materials in the IR range using only visible light optics and detectors. It is based on the nonlinear interference of entangled photons, generated via Spontaneous Parametric Down Conversion (SPDC). In our interferometer, the phase of the signal photon in the visible range depends on the phase of an entangled IR photon. When the IR photon is traveling through the media, its properties can be found from observations of the visible photon. We directly acquire the SPDC signal with a visible range CCD camera and use a numerical algorithm to infer the absorption coefficient and the refraction index of the sample in the IR range. Our method does not require the use of a spectrometer and a slit, thus it allows achieving higher signal-to-noise ratio than the earlier developed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Investigation of the Combined Effects of Pre-Processing, Wavelength Selection, and Regression Methods on Near-Infrared Calibration Model Performance.

Near-infrared (NIR) spectroscopy is being widely used in various fields ranging from pharmaceutics to the food industry for analyzing chemical and physical properties of the substances concerned. Its advantages over other analytical techniques include available physical interpretation of spectral data, nondestructive nature and high speed of measurements, and little or no need for sample prepar...

متن کامل

Optical parametric oscillators for precision IR spectroscopy and metrology

This thesis presents a continuous-wave optical parametric oscillator (cw OPO), specially developed for high-resolution Doppler-free molecular spectroscopy and metrology. The basic objective was to solve the long-standing problem of controlled access to any desired wavelength in the wide emission range of OPOs, including the ability to precisely tune the output frequency over the molecular and a...

متن کامل

Second Harmonic Generation Spectroscopy in the Reststrahl Band of SiC Using an Infrared Free-Electron Laser

The Reststrahl spectral region of Silicon Carbide has recently attracted much attention owing to its potential for mid-infrared nanophotonic applications based on surface phonon polaritons (SPhPs). Studies of optical phonon resonances responsible for surface polariton formation, however, have so far been limited to linear optics. In this Letter, we report the first nonlinear optical investigati...

متن کامل

Mid-Infrared Spectroscopy and Microscopy of Subcellular Structures in Eukaryotic Cells with Atomic Force Microscopy - Infrared Spectroscopy

Structures in Eukaryotic Cells with Atomic Force Microscopy Infrared Spectroscopy. Luca Quaroni,* Katarzyna Pogoda, Joanna-Wiltowska Zuber, Wojciech Kwiatek Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Kraków, Poland Abstract Atomic Force Microscopy – Infrared (AFM-IR) spectroscopy allows spectroscopic studies in the ...

متن کامل

Infrared Spectroscopic Study of a Selection of AGB and Post-AGB Stars

We present here near-infrared spectroscopy in the H and K bands of a selection of nearly 80 stars that belong to various AGB types, namely S type, M type and SR type. This sample also includes 16 Post-AGB (PAGB) stars. From these spectra, we seek correlations between the equivalent widths of some important spectral signatures and the infrared colors that are indicative of mass loss. Repeated sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017